SevenBridges

Latest advances: DNA sequencing, bioinformatics and precision medicine

Vladimir Kovačević

sevenbridges.com

DNA - the code of life

- DNA (deoxyribonucleic acid) double stranded molecule
- Same in every cell DNA replication during cell division
- More stable, redundant information complementary double helix chain
- Base pairs (complementary bases)
 - A T (adenine and thymine)
 - $\circ~$ C G (cytosine and guanine)

DNA code

• Set of all pairs of chromosomes

- Human genome:
 - \circ 23 pair of chromosomes (diploid)
 - \circ 22 autosomes
 - $\circ ~~1~sex~chromosome~(X~and/or~Y)$
 - $\circ \quad \ \ 3 \ \ billion \ \ base-pairs \ x \ \ 2$
 - \circ Intron and exom (2%)

Central dogma of molecular biology

DNA ----> RNA ----> Protein

Transcription: DNA ->RNA

• segment of DNA is copied into RNA (especially mRNA) - enzyme RNA polymerase.

Translation: RNA -> Protein

• ribosomes synthesize proteins using RNA pattern

Proteins

- Building blocks of life
 - \circ Various functions in the organism (transportation, regulation, metabolism, DNA replication)
- Long chains of amino-acids, that also fold into complicated 3D structures
 - \circ ~ We often distinguish protein primary, secondary, tertiary and quaternary structure

Genome sequencing

- Digitalization of genome
- Human Genome Project (1990-2003), 3B \$
- Sanger sequencing (First generation sequencing)
 - Long (took 13 years)
 - \circ Costly (3B\$ for one human genome)
- Currently NGS (next generation sequencing)
 - Illumina
 - \circ Around 200^{\$} and 1 day needed to sequence the genome
- Also third generation sequencing in use
 - \circ Longer read-length (up to 50k base)
 - Oxford nanopore, PacBio
 - Higher error rate
 - Smaller in size
 - Sequencing in space

GROWTH OF DNA SEQUENCING

NGS sequencing

- Read DNA fragment after reading it in sequencer
- Typical whole genome sequencing experiment:
 - \circ 200-500 million reads
 - \circ 50-150 bases (letters long)

sequencing adapters

Bioinformatics to the rescue!

- Genomes of the all species are arrays of nucleotides (A, T, C, G) strings
- The process of DNA sequencing returns only fragments of it
- Our mission: RECONSTRUCT IT!

Genome reconstruction

Result of sequencing experiment

- 100-500 GB
- Each read(line) containing a genome sequence 50-250 bp long

Genome reconstruction

How do we reconstruct genome from reads?

- 1. Alignment
 - \circ ~ Using reference genome to map the position of the reads (we share 99.9% of DNA)
- 2. Assembly
 - Reconstructing the genome by finding the links between the reads

Genome reconstruction

Assembly

AAGGACAAGA TCTTTTATG ATGACCAC GAATGCAAGG CCACATCTTT ATGATTTAGA

Assembly

Alignment

AAGGACAAGA TCTTTTATG ATGACCAC GAATGCAAGG CCACATCTTT ATGATTTAGA

Alignment

- Use indexing structures fast sequence search
- Able to align whole genome sample with 880 million reads against 3-billion long reference genome in 3 hours (36 CPUs, 60Gb memory)

Variants (mutations)

MUTANT IT'S LIKE A PUZZLE ... gene BHLHE41 chromoSome 12 reference W MILLING TATACCC MUTANT (1)(1)(1)1711171 genome 17' œ GCTGCCGCCCUGTTC GCCGCCCUGTTCCCG pieces of DNA produced by a sequencer GCCCUGTTCCCGCTG JGTTCCCGCTGCTA C1 gene BHLHE41 chromosome 12 reference genome 0 a GCTGCCGCCCLGTTC A naah... just a sequencing GCCGCCC JGTTCCCG error... pieces of DNA produced by a Sequencer GCCCLGTTCCCGCTG NORMAL CLGTTCCCGCTGCTA

Genomic Variants (mutations)

We share ~99.9% of DNA, 99% with chimps, 80% with mouse, 50% with banana

Genomic Variants

Each of those characteristics is caused by one Single Nucleotide Variant

Why perform DNA sequencing?

- Rare genetic diseases
- Origins of humans
- Precision medicine-Cancer treatment (immunotherapy)
- Microbes that live inside us (microbiome)
- Study ways that genomes work

MEDICAL DISPATCH JULY 21, 2014 ISSUE

ONE OF A KIND

What do you do if your child has a condition that is new to science?

By Seth Mnookin

Precision medicine

"Precision medicine is a medical model that proposes the customization of healthcare, with medical decisions, treatments, practices, or products being tailored to the individual patient."

What is cancer?

Mutation during DNA replication can fall to:

- 1. Intron (no change)
- 2. Important gene (cell dies, organism lives)
- 3. Gene that stops cell division (cell lives, organism...)

What causes cancer (increases probability of mutation)?

- 1. EM radiation
- 2. Chemical agents
- 3. Free radicals
- 4. Genetic factors
- 5. Infections (viruses)

A dividing lung cancer cell. Credit: <u>National Institutes of Health</u>

What is metastasis?

Body's cells begin to divide without stopping and spread into surrounding tissues

Cancer cells - ignore signals that normally tell cells to stop dividing or that begin a process known as programmed cell death, or **apoptosis**, which the body uses to get rid of unneeded cells

Cancer cells

Our body develops thousands cancer cells every day. OMG! OMG! OMG!

IDENTIFYING THE ENEMY

MHC Complex

MHC is a set of cell surface proteins essential for the acquired immune system to recognize foreign molecules (translated from HLA regions from the genome for humans)

MHC molecules bind to protein fragments available in the cell

MHC molecule with **antigen** (MHC complex) is "presented" outside of the cell to cytotoxic T cells and helper T cells

Nature Reviews | Immunology

So, what can be done there?

- 1. Identify NEOANTIGENS proteins presented only by cancer cells precision medicine
- 2. "Program" T-cells to recognize neoantigens

Compare DNA from Tumor and Normal tissue Mutations present in tumor - somatic mutations

From DNA somatic mutation to neoantigen

Neoantigen cancer vaccine

Two gene therapy drugs obtained FDA approval:

- Novartis 83% of patients complete or partial remission
- Advaxis multiple neoantigens presented to immune system Cons of immunotherapy
 - Autoimmune disease
 - Very expensive

Questions?